
Theor. Appl. Genet. 64, 339-344 (1983) 

�9 Springer-Verlag 1983 

Selection Indices for Non-linear Profit Functions 

M. E. Goddard 
Department of Tropical Veterinary Science, James Cook University of North Queensland, Queensland (Australia) 

Summary. Conventional selection index theory assumes 
that the total merit or profitability of animals is a linear 
function of measurable traits. However, in many cases 
merit may be a non-linear function of these traits. A 
linear selection index can still be used in this situation 
but the optimum index depends on the selection in- 
tensity to be used and on the number of generation over 
which the selection response is to be maximized. Non- 
linear selection indices have been suggested but these 
result in a lower selection response than the best linear 
index. Linear selection indices suggested in the past are 
shown to correspond to the optimum linear index for 
either a very small selection response or, in the case of 
restricted indices, a very large selection response. The 
economic value of a trait may depend on management 
decisions taken by the farmer. In this situation the econ- 
omic values should be calculated assuming that the 
management decisions taken maximize profit given the 
present genetic value of the animals. 
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Introduction 

Selection index theory was originally formulated on the 
assumption that it was desired to maximize a quantity 
(which I shall call profit) which was a linear function of 
measurable traits such as growth rate and.milk yield. 
However, in some cases profit may be better charac- 
terized by a non-linear function of these traits. For in- 
stance Moav and Hill (1966) expressed profit (y) as 

n 
y = c -  gx~ - - -  

X2 

where x~ is productive efficiency, x2 is reproductive ef- 
ficiency and c, g and n are constants. 

Many methods of constructing selection indices to 
improve non-linear profit functions have been pro- 

posed. This paper examines the relationships between 
these proposed methods and shows that one of them 
leads to the optimum index. 

Non-linear profit functions cause difficulty because 
the economic value of a trait is not constant but changes 
as the population mean changes. A similar problem 
arises when the economic value of a trait depends on 
management decisions taken by the farmer. The best 
method for deriving a selection index under these con- 
ditions will also be discussed. 

The interpretation on non-linear profit functions 
y =  f(x) 1 must be clearJy defined, f(a) could represent 
the profit from identical animals in which x - -a ;  or f(a) 
could represent the profit from a population of animals 
in which K=a,  but with the same variance, skewness, 
etc., as the present population. Given one type of func- 
tion it is possible to find the corresponding function for 
the alternative definition. For linear profit functions the 
two functions are identical and for quadratic functions 
they differ only by a constant. The theory of selection 
responses relates K in one generation to K in the next so 
it is convenient to define profit as a function of K. All 
profit functions used in the remainder of the paper are 
of  this type. 

Linear Indices 

Conventional selection index theory can still be used for 
non-linear profit functions by approximating y by a 
linear function. Moav and Hill (1966) used 

y =  Oy x~ + Oy (1) 

0y 
where ~ and ~x2 are evaluated at (~ ,  ~2). Then ~x 

1 Small letters in bold type represent vectors and capital letters 
represent matrices 
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Fig. 1. Curve (b) is the profit function y =--,  and line (a) is the 
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Fig. 2. Graphical method &finding the optimum index. Con- 
tours of the profit function y= xl + x~ are shown (solid lines). 
The broken lines are response circles corresponding to two in- 
tensities of selection. The present mean i is at the origin. The 
optimum index depends upon which intensity of selection is 
used 

can be used as economic weights in the normal  method 
of  constructing an index. 

Wilton et al. (1968) devised a linear index which 
minimized the sum of  squared differences between the 
index and a quadratic profit function. Let profit (y) be 
defined by 

y = ~ ' A x + a ' x  

where x is a vector o f  genetic values and A is a matrix of  
constants. Then the index of  Wilton et al. (1968) is 

I = p '  (P-~C(a + 2A~)) 

where p is a vector of  phenotypic values 

P is a matrix o fphenotyp ic  variances and covariances 
C is a matrix ofcovar iances  between p and x. 

This is the conventional index with economic weights 
assumed to be a + 2 A ~ .  This is the same value as given 

0y 
by ~ x  evaluated at i so this index is identical to that 

based on the use o f ( l ) .  
The approximat ion (1) correctly predicts the in- 

creased profit obtained from a small change in ~ but as 
selection changes :~ the approximat ion becomes less ac- 
curate. For  instance, Fig. 1 illustrates the profit function 

1 
y = - .  Clearly d y  underestimates the value of  reducing 

x dx 
x. The slope of  the chord AB gives the value of  reducing 
~ to x'. 

Moav and Hill (1966) extended this graphical 
method to the case where profit is a function of  2 or 
more traits. Assume that Xx and x2 are of  equal variance 
and heritability and uncorrelated. I f  selection is based 
on the index I =  x~ + bx2 then for a given intensity of  se- 
lection the direction in which ~ is moved  depends on b. 
As b is varied the points to which ~ is moved form a 
circle. I f  the profit contours are plotted on the same 
graph then the point on the response circle with the 
max imum profit can be found and the op t imum value 
of  b deduced (Moav and Hill 1966). This method is il- 
lustrated in Fig. 2 for a profit function 

y = x ,  +x~ 

It can be seen that the op t imum direction of  selection 
and hence the op t imum index depends on the intensity 
of  selection to be used. At the point on the response 
circle with max imum profit the slope of  the circle is the 
same as the slope of  the profit contour, The linear ap- 
proximation (1) has the same slope as the profit  contour 
at the present mean  i .  Therefore the selection index cal- 

0y 
culated using a = ~ x  corresponds to a very small re- 

sponse circle ( =  very low intensity of  selection). The dif- 
ference between this solution and that o f  the graphical 

0y 
method reflects the increasing inaccuracy of  a =  Ox as 

the selection response increases. 

I f  it is the long term value of  the selection response 
that we wish to maximize then x' in Fig. 1 and the re- 
sponse circle in Fig. 2 should represent more than one 
generation improvement .  However  discounting gains 
made in the future will lead to more  emphasis  being 
placed on the short term than on the long term re- 
sponse. 

I f  xl and x~ are not o f  equal variance, equal heri- 
tability and uncorrelated the response curve will be an 
ellipse not a circle. However  Moav and Hill (1966) 
present a method of  transforming xl and x2 so 
that the response curve is circular on the t ransformed 
axes. 
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Non-linear Selection Indices 

In order to maximize a non-linear profit function it 
seems reasonable to consider non-linear selection in- 
dices. Wilton et al. (1968) derived a quadratic index 
which minimized the sum of squared differences be- 
tween the index and genetic merit for a quadratic profit 
function and Ronningen (1971) derived a cubic index 
for cubic profit functions. However, maximizing the 
genetic merit of  the parents is not identical to maximiz- 
ing the genetic merit of their offspring. The following 
simple example illustrates this problem. 

Assume that profit y = x 2 and that h i =  1.0 and ~ = 0. 
The animals with the highest genetic merit are those 
with highly positive and those with highly negative val- 
ues of x, and these are the animals selected by the index 
of Wilton et al. (1968). But when these animals are 
mated together the mean of the offspring will still be 
2=0.  We normally assume that offspring inherit the 
mean of the additive genetic value of their parents not 
the complete distribution of their additive genetic val- 
ues. I f  the offspring have the same distribution as the 
previous generation before selection then they will have 
the same mean profit. Although the variation in x is 
additive genetic, the variation in y is epistatic (additive 
x additive) which explains why the superiority of the 
parents in y is not passed on to their offspring. In this 

extreme situation using a -  dy leads to the prediction -Tx 
that no improvement in y is possible, whereas the 
graphical method shows that one should select either 
for + x or - x  but not both. In general if y--  f(x), it is not 
rr which the index should maximize but f(~). I will now 
discuss a method of finding the index which does this. 

Consider two traits xl and x2 having a bivariate nor- 
real distribution, equal variances, equal heritabilities 
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Fig. 3. Contours of the profit function y = xl + x~ are illustrated 
(solid lines). The broken line is the response circle, A is the 
present mean (~1, ~2) and C is the point of highest profit on the 
response circle 

and uncorrelated. What is the index that will move the 
mean (21, 22) the greatest possible distance from its 
present position? Because the problem is radially sym- 
metrical the maximum distance that (21, 22) can be 
moved is the same in all directions. Therefore let us find 
the index that maximizes the distance that the mean can 
be moved in the x2 direction. The best possible index is 
simply I = x2 because any index that involved x~ would 
result in some selected animals having a lower x2 value 
than some non-selected animals and hence lowering the 
selection differential. 

Thus the index that maximizes the distance moved by 
the mean in the x2-direction has index contours which 
are straight lines perpendicular to the x2-direction. But 
because of the radially symmetrical nature of the prob- 
lem the index that maximizes the response in any direc- 
tion is therefore one with straight index contours per- 
pendicular to the desired direction i.e. a linear index. 

Now consider some profit function y = f ( ~ ,  x2). Fig- 
ure 3 illustrates the countours for y=2~+22 as an 
example. Point A is the present position of (s 22). The 
circle is the response circle for linear indices with a fixed 
intensity of selection. There are two situations which 
must be considered: 

(1) y has no maximum within the response circle. In 
Fig. 2 the point C represents the linear index which 
maximizes profit (y). All nonlinear indices move (2a, x2) 
by a smaller distance than the linear index and hence 
the new value of ( ~ ,  22) will lie within the response 
circle. But no position within the circle has a y-value as 
high as C, so all non-linear indices are inferior to the 
linear index represented by C. 

(2) y has a maximum within the response circle. In 
this case we can decrease the intensity of  selection so 
that the radius of the circle decreases until the point 
with maximum y lies on the circle. Then the argument 
in situation (1) applies. It is always desirable to reduce 
the intensity of selection if this can be done without de- 
creasing the response because selection is costly in terms 
of animals which are culled and/or  missed op- 
portunities for selection on other criteria. 

If  xl and x2 are not of  equal variance, equal herita- 
bility and uncorrelated then a linear transformation of 
x~ and x2 can be found in which the response curve is 
circular (Moav and Hill 1966) and so the argument pre- 
sented above can be applied. Generalization to more 
than two dimensions follows similar lines. 

Thus for any profit function the linear index derived 
by the graphical method of Moav and Hill (1966) either 
achieves the maximum increase in profit possible for a 
given intensity of selection, or reaches the maximum of 
the profit surface with the minimum intensity of selec- 
tion. 

Kempthorne and Nordskog (1959) suggested two 
other methods of deriving selection indices for non- 
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linear profit functions. Firstly, we could treat terms such 
as x 2 as additional traits to be included in the calcu- 
lation of the index by b = P-1 Ca. As an example, as- 
sume that y =  x~-x~ so that 22 = 0 maximizes profit. I f  
all the additive genetic variance in x] (Ax0 is due to 
additive genetic variance in x2, then Ax~ can be found 
by considering the effect on x] of  a gene substitution 
which has a small effect (/Ix) on x2 from 

E (x2 + Ax) 2 - E(x~) ~ 2~2 Ax 

Thus Ax~-~ k2Ax2, where k = 22~ and Ax, is the additive 
genetic variance of x2. 

The phenotypic covariance between x~ and x~ (Cov 
(x~x~)) equals 

Cov (x~, kx2 + (x~-kx2)) 

= k Cov  (x l ,  x2) 

Cov (xx, x~-kx2)= 0 if x has a multivariate normal dis- 
k 

tribution because of symmetry about x~ = ~-= x2. Simi- 

lar results apply for the additive genetic covariance. 
Thus the rows and columns in P and C which cor- 
respond to x~ are simply k times the rows and columns 
corresponding to xz except that the phenotypic variance 
of x~ is larger than this rule would predict because the 
heritability of x~ is less than that of  x2. Consideration of 
the equations Pb = Ca shows that due to these linear de- 
pendencies the b coefficient corresponding to x~ must 
be zero and the solutions are those that would have 
been obtained by deleting all elements referring to x~ 
and giving x2 the economic weight k. This is in fact the 

0y . 0y 
normal index obtained by a = ~xx slnCe~x2 = 2~  = k. 

Provided x has a multivariate normal distribution, 
the quadratic index calculated in this way reduces to the 
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Fig. 4a and b. The optimum selection indices for the profit 
function y=xx-x] are illustrated for both a very small re- 
sponse ellipse (a) and a larger response ellipse (b). For con- 
venience the two graphs are drawn to different scales. As the 
response increases the optimum direction of selection moves 
toward no change in x2. (The correlation between xx and x2 is 
0.64) 

normal linear index for all quadratic profit functions. 
As usual this index is also that derived by the graphical 
method using a very small response ellipse as shown in 
Fig. 4 a. 

The second suggestion of Kempthorne and Nord- 
skog (1959) is to maximize profit subject to a restriction 
that certain traits do not change. Intuitively this seems a 
reasonable approach when the population mean is al- 
ready at an optimum value for these traits. For instance 
assume that y = x l - x ~  and that 22=0. Maximizing y 
subject to the restriction that x2 remains zero is equi- 
valent to the graphical method assuming a very large 
response ellipse (Fig. 4 h). 

Bulmer (1980) presents a different method of finding 
the best selection index for non-linear profit functions. 
His method involves maximizing a function of the mean 
of the selected group. This emphasizes the point that the 
value of any one animal depends on which other ani- 
mals are selected along with it. However, this method 
would be impractical to use because it would require 
the index to be evaluated for all possible groups of ani- 
mals that might be selected, in order to chose the best 
group. 

For non-linear profit functions, Allaire (1977) point- 
ed out that non-random mating can increase the aver- 
age phenotypic merit of the progeny. He derived non- 
linear indices to select the best mate for a given pre- 
selected parent. The optimum index depends on the 
phenotype of the parent already chosen. The non-ran- 
dom mating caused by the use of  these indices does not 
increase the long term rate of genetic gain but it utilizes 
the epistatic variation to maximize the phenotypic merit 
of  the next generation. Further generations do not build 
on top of this advance - it must be recreated in each 
new generation. Thus the best policy is to use a linear 
index to select the parents of  the next generation and 
then use assortative matings amongst these pre-selected 
parents. 

In many situations the linear approximation (1) will 
be adequate. However if the population mean is already 
near optimum in some traits this approximation may 
not be satisfactory. As an example, assume again that 

~y 
y = x l - x ~  and 22 =0. The index based on a =  ~ implies 

selection for xl only, but if  xl and x2 are correlated this 
will eventually lead to a decline in -x [ .  An analogous 
situation occurs in many selection experiments. Selec- 
tion for a quantitative character often leads to a decline 
in traits closely related to natural fitness despite the fact 
that fitness was uncorrelated with the character under 
selection in the base population (Merritt 1974). Fitness 
is often maximized at an intermediate value of  a quanti- 
tative trait and so correlated changes in this trait as a re- 
sult of selection could explain the decline in fitness. The 
preceding analysis shows that including fitness traits in 
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the profit function is not sufficient to prevent this de- 
cline unless the curvilinear nature of  the relationship 
between traits is recognized. 

The argument presented above in favour of linear 
indices assumes that all additive genetic variation in y is 
due to additive genetic variation in x. It is possible that 
additive variation in y could be represented by epistatic 
variation in x. In this case one could follow the sugges- 
tion of Kempthorne and Nordskog (1959) and include 
terms such as x 2 in the index as if they were additional 
traits. In this case the genetic variances and covariances 
involving terms such as x 2 must be estimated directly 
from data and not derived from those ofx. 

This situation might arise if some trait of overall 
productivity had more biological unity than the com- 
ponents into which we divide it. Because of the diffi- 
culty in defining better components, selection based di-  

r e c t l y  on overall productivity as suggested by Beilharz 
(1972), might be the safest procedure. Alternatively if a 
transformation of x on which the genetic variance was 
additive could be found, the transformed variables 
could be used in a linear index. 

Even when the genetic variation in x is additive, 
non-linear indices would have one advantage over 
linear indices in that they would be more stable. Again 
assume that y = xl-x~ and that xl and x2 have the same 
heritability and are uncorrelated. The selection index 
I = x l -  x~ could be used regardless of the value of i ,  but 
this is not true for any linear index. 

P r o d u c e r - s u p p l i e d  V a r i a b l e s  

The profit that a farmer makes depends not only on the 
genetic value of his animals but also on the level of  
other variables which he sets by management decisions. 
For instance, profit from beef production in an area in 
which ticks are endemic depends on the tick resistance 
of the animals and on the number of times they are 
dipped in acaricide. I f  there is no interaction between 
the animal variables and the management variables 
then the latter do not need to be taken into account 
when constructing selection indices. But if there is an in- 
teraction, then the economic values of the animal vari- 
ables depend on the levels of the management variables 
chosen. Melton et al. (1979) present a method of de- 
termining the economic weights to be used in this situ- 
ation. Their method is equivalent to the following: 

Let profit (y) be a function of animal variables (x) 
and management variables (z) 

y = f(x, z) 

The optimum level ofz(zm) can be found from 

0Y - 0  
Oz 

evaluated at the present mean (i), The economic 
weights appropriate for x can then be found as before 
by 

~y 
a = - -  evaluated at (~, Zm) 

~x 
However I found the description of the method by 

Melton et al. (1979) confusing. The reason for this con- 
fusion is explained in the Appendix. 

One feature of the method of Melton et al. may ap- 
pear unreasonable. Surely the Value of improving x 
should be calculated while simultaneously changing z 
so that it remains at the optimum value. In our beef 
cattle example the principal advantage to be gained by 
increasing tick resistance may be due to decreasing the 
number of times the cattle must be dipped. Is it correct 
to calculate the economic value of increasing tick resis- 
tance when the number of dippings remains constant at 
the level required for the less resistant cattle? 

031 =0  leads to simultaneous equations Solving 0z 

whose solution can be expressed as z=z(x) .  Then the 
profit resulting from changing x and changing z accord- 
ing to z = z (x) is 

y =  f (x ,  z(x))-- g(x).  
, - t  

The economic weights of  x are t h e n ~ .  However 

~g Oy Oz Oy ~y ~g ~y 
- -  = But since fizz = 0 ' ~ x  = a x  Ox Ox~-~Ozz 

That is, the increased profit obtained by a small 
change in  x is the same whether it is calculated by si- 
multaneously optimizing z or by maintaining z constant 
at the value which maximized profit prior to selection. 
However, if larger changes in x are to be considered by 
the graphical method then the contours of g(x) not 
f(x, z) at Zm should be plotted. 

C o n c l u s i o n  

Even for non-linear profit functions a linear selection 
index achieves the greatest increase in profit. This con- 
clusion is in keeping with the basic assumption of quan- 
titative genetics that it is the additive value of genes 
which determines the response to selection. I f  the curva- 
ture of the profit contours in small relative to that of the 
response circle (as will usually be the case if ~ is not al- 
ready near optimum in some traits) then estimating the 

Oy 
economic weights by a=~-xx should be satisfactory. 

However a response circle of more than one generation 
should be considered. I f  this is not the case then the 
graphical method or equivalent algebraic or numerical 

Oy 
methods could be used. a =Oxx will be especially inad- 
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equate in the vicinity of  a minimum, a saddlepoint or 
an inflection but I suspect that these will be rare 
phenomena in real life. However, maxima or intermedi- 
ate optima for some traits may  be quite common es- 
pecially in situations where natural fitness is an impor- 
tant part o f  profitability. In these cases continued use of  

the index based on a = ~ - w i l l  also be unsatisfactory. I 

believe it is important  that we recognize the existence of  
intermediate optima so that the best long term selection 
procedure can be adopted and so that we can realisti- 
cally estimate the amount  o f  genetic improvement 
which is possible. 

Acknowledgements 

I wish to thank J. W. James and C. J. Smyth for their helpful 
comments. 

The method of  Melton et al. (1979) is interpreted in 
a different way by Thompson (1980). He argues that ar 
is maximized with respect to x by 

0zc ~w 
0-~ =Pw~xx-Px=0  

and if  the present population mean ~ is already op- 
timum then this implies 

0w 
Px=p'v fxx (~' Zm) 

But if the present population mean is opt imum then no 
genetic progress is possible and seeking economic 
weights does not seem worthwhile. This interpretation 
depends on the illogical definition of  ~r as profit with 
the result that, as Thompson (1980) points out, ~ can 
easily be minimized rather than maximized. (This hap- 
pens if 

3w 2 
~ x  (~) > 0) 

Appendix 

In their method of  deriving economic values Melton et 
al. (1979) define a variable (Jr) 

w t t ~ - p w w - p x x - p z z  

where Pw is the price o f  the product 
w is the amount  o f  product  produced and is a function 
o f x  and z 
pxare the economic weights o f  the traits x 
Pz are the costs o f  the inputs z 

They call this variable ~ a profit function but this is 
illogical since the animal variables do not cost money. It 
could represent the profit o f  a farmer who buys animals 
from a breeder at a price dependent on their genetic 
merit but it would not be sensible to maximize this 'pro- 
fit' since pxX is loss to one farmer but profit to another. 
Although Melton et al. (1979) state they maximize ~ by 
solving 

~ar ~er 

~x ~z 

they do not maximize ar since they do not solve these 
equations for x and z but for Px and z. What  in fact their 
method does is to find the value o f z  which maximizes 

y = p w w - p ~ z  

and to use this value o f  z in the normal method of  cal- 
culating economic weights. 
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